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Abstract

Clustering is a ubiquitous task in ecological and environmental sciences and

multiple methods have been developed for this purpose. Because these cluster-

ing methods typically require users to a priori specify the number of groups,

the standard approach is to run the algorithm for different numbers of groups

and then choose the optimal number using a criterion (e.g., AIC or BIC). The

problem with this approach is that it can be computationally expensive to run

these clustering algorithms multiple times (i.e., for different numbers of

groups) and some of these information criteria can lead to an overestimation

of the number of groups. To address these concerns, we advocate for the use of

sparsity-inducing priors within a Bayesian clustering framework. In particular,

we highlight how the truncated stick-breaking (TSB) prior, a prior commonly

adopted in Bayesian nonparametrics, can be used to simultaneously determine

the number of groups and estimate model parameters for a wide range of

Bayesian clustering models without requiring the fitting of multiple models.

We illustrate the ability of this prior to successfully recover the true number of

groups for three clustering models (two types of mixture models, applied to

GPS movement data and species occurrence data, as well as the species arche-

type model) using simulated data in the context of movement ecology and

community ecology. We then apply these models to armadillo movement data

in Brazil, plant occurrence data from Alberta (Canada), and bird occurrence

data from North America. We believe that many ecological and environmental

sciences applications will benefit from Bayesian clustering methods with

sparsity-inducing priors given the ubiquity of clustering and the associated

challenge of determining the number of groups. Two R packages, EcoCluster

and bayesmove, are provided that enable the straightforward fitting of these

models with the TSB prior.
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INTRODUCTION

Clustering algorithms are commonly used across multiple
disciplines to reduce data dimensionality by grouping data
items with similar features, enabling the identification of
the main latent structural characteristics of highly multi-
variate data (Berkhin, 2006; Jain et al., 1999; Legendre &
Legendre, 2012). In environmental sciences and ecology,
clustering approaches have been extensively used since at
least the 1920s (Legendre & Legendre, 2012). Examples
for biodiversity data sets include cluster analysis to define
biogeographical regions (Azeria et al., 2007; Foster
et al., 2017; Kreft & Jetz, 2010; Lyons et al., 2017), identify
indicator species by grouping species that tend to co-occur
(Azeria et al., 2009), identify microbial community pat-
terns associated with sample origin and/or sampling time
(Ramette, 2007), and cluster species that tend to have simi-
lar relationships with other species in food web studies
(e.g., set of predator species that feed on the same set of
prey species; Baskerville et al., 2011). Cluster analysis has
also been extensively used in other environmental science
applications. For example, clustering has been used to clas-
sify water catchments in data-scarce regions (Auerbach
et al., 2016) and to understand the spatial variation in the
detection rate of pharmaceuticals in rivers across different
regions (Jameel et al., 2020).

Clustering is an important task across scientific fields
and, as a result, a rich assortment of methods and algo-
rithms have been developed through time (Jain et al., 1999).
These methods can be classified based on several dichoto-
mies, such as whether a single partition (partitional) or a
nested series of partitions (hierarchical) is created, if
methods output hard (each data item can only belong to a
single group) or fuzzy (each data item can have varying
degree of membership to each group) groups, and if these
methods are algorithmic or probabilistic (Berkhin, 2006;
Bouveyron & Brunet-Saumard, 2014; Jain et al., 1999;
Legendre & Legendre, 2012; Saxena et al., 2017). A long-
term challenge when using clustering algorithms consists of
defining the appropriate number of clusters, which typically
has to be a priori specified (Berkhin, 2006; Jain et al., 1999;
Legendre & Legendre, 2012; Saxena et al., 2017). The stan-
dard approach for this task is to systematically vary the
number of groups and run the algorithm once for each set-
ting. Then, the optimal number of groups is determined
using a performance metric (e.g., AIC, BIC, gap statistic,
integrated classification likelihood, minimum message
length; Berkhin, 2006; Biernacki et al., 2000; Charrad
et al., 2014; Daudin et al., 2008; Depraetere &
Vandebroek, 2014; Fraley & Raftery, 2007; Hui et al., 2013;
Hui & Warton, 2015; Lyons et al., 2017; ter Braak
et al., 2003; Tibshirani et al., 2001). This approach has been
extensively used in the past but it can be computationally

expensive and time consuming for large data sets and/or
complex models. Importantly, large simulation studies have
shown that no single performance metric is consistently
better than the others (Depraetere & Vandebroek, 2014)
and that some of these commonly adopted information
criteria tend to favor models with a larger number of groups
than warranted (Casella et al., 2014), even if the model
faithfully mirrors the data-generating mechanism (Pohle
et al., 2017).

The generation of sparse solutions (i.e., where only a
small fraction of the parameters are non-zero) is highly
desirable for a range of modeling applications. For exam-
ple, regularization (i.e., penalty terms added to the objec-
tive function) in statistical (e.g., regression) and machine
learning (e.g., support vector machines) models is key to
avoid overfitting, increase predictive skill, and improve
interpretability of model results. Interestingly, many of the
proposed regularization approaches can be interpreted as
Bayesian models with very specific types of sparsity-
inducing priors (Hahn & Carvalho, 2015; Hooten &
Hobbs, 2015; Park & Casella, 2008; Wood, 2017). Likewise,
the challenge of determining the number of clusters can
also be tackled by defining Bayesian models with sparsity-
inducing priors (i.e., priors that favor fewer clusters). In
this paper, we describe how different types of Bayesian
clustering methods applied to ecological data, when used
together with sparsity inducing priors, can automatically
determine the number of clusters without requiring fitting
multiple models. In particular, we focus on a specific type
of sparsity-inducing prior, the truncated stick-breaking
(TSB) prior (i.e., an approximation of the Dirichlet Pro-
cess), that has been extensively used in Bayesian nonpara-
metrics (Sethuraman, 1994) but that has seen relatively
little application in ecological and environmental sciences.

To illustrate how this approach can be used for a range
of models, we rely on three Bayesian clustering methods
applied to ecological data: two types of mixture models,
applied to movement and species occurrence data, and the
species archetype (SA) model (Dunstan et al., 2013). To
our knowledge, none of the three clustering methods with
the TSB prior has been used in ecological applications. We
apply these three clustering methods to simulated data to
showcase the ability of the sparsity-inducing priors to suc-
cessfully recover the true number of groups by fitting the
model just once. We then perform an exploratory data
analysis with these methods to reveal the latent structure
in armadillo movements in the Pantanal wetlands (Brazil),
plant occurrence in Alberta (Canada), and breeding bird
occurrence from United States and Canada. We also pro-
vide two R packages (EcoCluster and bayesmove) that
enable straightforward fitting of these clustering models,
which we expect will be of broad use for ecological and
environmental science clustering tasks.
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MATERIALS AND METHODS

Truncated stick-breaking prior

Clustering methods (also referred to as mixture
models; McLachlan & Peel, 2000) explicitly or implic-
itly contain multiple latent variables zi, i = 1, …, n.
The latent variable zi indicates the cluster member-
ship of unit i and can take on any integer value
between 1 and K, where K is the number of clusters
defined a priori by the user. Depending on the spe-
cific application, this unit can consist of individual
forest plots, rivers, species, pharmaceuticals, sampling
points, etc. In probabilistic clustering approaches, it
is typically assumed that the latent variable zi follows
a categorical distribution:

zi �Cat θð Þ

where the vector θ is of size K (i.e., the number of clus-
ters) and contains probabilities that sum to 1, indicating
the likelihood that unit i is assigned to individual clus-
ters. This categorical distribution is used because it is
assumed each unit can only belong to a single group.

Finding the optimal number of groups K by fitting the
model multiple times (once for each K value) and choos-
ing K using a model selection criterion such as AIC or
BIC can be a prohibitive approach if fitting each model is
computationally expensive. Furthermore, past research
has suggested that some of these information criteria
tend to favor models with a larger number of groups than
warranted (Casella et al., 2014), even if the model faith-
fully mirrors the data-generating mechanism (Pohle
et al., 2017). The approach proposed here avoids these
problems by relying on the TSB prior, a particular type of
prior for θ that favors sparseness (i.e., a smaller number
of groups). With this prior, the user is only required to
specify the maximum number of groups K and the algo-
rithm chooses the number of groups (k ≤ K) that best
clusters the sample data.

The stick-breaking prior has a long tradition in Bayes-
ian nonparametric models. This prior arises from the
Dirichlet process (DP), which is arguably the most popu-
lar Bayesian nonparametric model used for clustering
applications (Ferguson, 1973). The distribution over ran-
dom partitions induced by the DP is commonly known in
the machine learning community as the Chinese restau-
rant process (CRP; Teh, 2011) and is equivalent to the
Ewens sampling formula used to describe a distribution
over partitions in population genetics that was intro-
duced before the DP (Crane, 2016; Ewens, 1972). Another
definition of the DP is the P�olya urn representation,
which essentially describes the same distribution from

the CRP (Blackwell & MacQueen, 1973). Here, we focus
on the alternative definition of the Dirichlet process
known as the “stick-breaking” construction (Sethuraman,
1994). This definition of the DP model is considerably sim-
pler and more general than the previously mentioned rep-
resentations. This approach has been extremely useful for
the development of novel statistical models as well as new
Markov Chain Monte Carlo (MCMC) inference algorithms
(Ishwaran & James, 2001). Notice that, despite similar
names, this “stick-breaking” prior is not associated with
the “broken stick model” for species abundance described
in MacArthur (1957).

As commonly done in Bayesian nonparametrics
(Ishwaran & James, 2001), we adopt a truncated version
of this prior by defining a maximum number of groups
(hereafter referred to as the truncated stick-breaking
[TSB] prior). To define the maximum number of groups,
the standard advice is to choose a truncation point such
that the results would be indistinguishable from what
would have been obtained with a larger number of
groups (Ishwaran & James, 2001). More practically, as
long as most of the posterior mass is concentrated on the
initial components, then the actual value for the maxi-
mum number of groups should have no effect on model
results (Manrique-Vallier, 2016). On the other hand, if
the maximum number of clusters is reached, then the
standard advice is to increase the maximum number of
possible groups to avoid an incorrect approximation.
Notice that, because the TSB prior is typically viewed as
an approximation to the DP, some researchers actually
prefer to work directly with the DP to avoid any potential
approximation errors (MacEachern & Muller, 1998;
Papaspiliopoulos & Roberts, 2008).

Instead of viewing the TSB prior solely as an approxi-
mation to the DP, our perspective is that the truncation
in this prior is useful from a dimension reduction per-
spective because it avoids the number of groups increas-
ing with sample size (Murugiah & Sweeting, 2012).
Indeed, Casella et al. (2014) justified their use of a strong
shrinkage prior by stating that, even when the true num-
ber of cluster is large, cluster analysis “will only result in
useful inference when the answer contains a relatively
small number of clusters.” For the same reason, we advo-
cate for modelers interested in dimension reduction to
carefully think about the maximum number of groups
that is still manageable/interpretable when defining
where to truncate the stick-breaking prior, this way limit-
ing the complexity of the solution that is found by the
algorithm.

The truncated stick-breaking prior for θ is constructed
indirectly by first defining

Vk �Beta 1,γð Þ
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for k = 1, …, K � 1 and VK is set to 1. The parameters
V1, …, VK are then used to calculate θk, employing the fol-
lowing expressions:

θ1 ¼V1

θk ¼Vk

Yk�1

p¼1
1�Vp
� �

for k>1: ð1Þ

We use the following shorthand to denote this prior:

θ�TSB γð Þ:

Notice that, according to this prior, the expected propor-
tion of units assigned to cluster k is given by

E θk½ � ¼E Vk½ �
Yk�1

p¼1
1�E Vp

� �� �¼ 1
1þ γ

1� 1
1þ γ

� �k�1

¼ γk�1

1þ γð Þk for k<K; and

E θk½ � ¼ 1� 1
1þ γ

� �k�1

for k¼K:

The depiction of this equation for 0 < γ < 1 reveals an
approximately exponential decay of E[θk] with increasing
k and that smaller γ corresponds to faster decay and
therefore sparser results (i.e., fewer clusters).

To illustrate how this prior works, say we have a maxi-
mum of six groups (K = 6) and V = [V1, …, V6] is equal to
[0.19, 0.33, 0.27, 0.95, 0.47, 1.00]. Recall that, by definition,
V6 is set to 1. As illustrated in Table 1, these values for
V imply that θ = [θ1, …, θ6] is equal to [0.19, 0.27, 0.15,
0.38, 0.01, 0.01]. Note that θ5 and θ6 are very small com-
pared to θ1, …, θ4 and that the four first groups account for
99% of all observations. These values suggest the presence
of four main groups, despite having allowed for up to six
groups. These results arise because the TSB prior shrinks
θk to 0 for large values of k. Similar to how the compo-
nents that only explain a small portion of the variation are
typically ignored when conducting a Principal Component
Analysis (PCA), the remaining groups when using the TSB
prior (i.e., groups 5 and 6) are also typically ignored.

An intuitive way of interpreting the expressions for θk
in Table 1 is to think about a sequential process in which
a sampling unit is eventually assigned to cluster k after
failing to be assigned to clusters 1, 2, …, k � 1. For exam-
ple, the expression for θ3 can be interpreted as the proba-
bility that a sampling unit is not assigned to group
1 (equal to 1.00 � 0.19) times the probability that it is not
assigned to group 2 (equal to 1.00 � 0.33) times the prob-
ability that it is assigned to group 3 (equal to 0.27). The

name “stick-breaking” originates from the metaphor of
sequentially breaking a stick of length 1 into smaller and
smaller pieces, as illustrated in Figure 1.

Another benefit of using the TSB prior is that, by
weakly identifying the labels of each cluster, it can help
to reduce the amount of label switching, a common prob-
lem for mixture models, which refers to the fact the
group labels are unidentified parameters in these models.
This problem often leads to poor mixing of MCMC algo-
rithms and generates potentially nonsensical results if
posterior distributions of parameters are summarized by
their averages (Stephens, 2000).

Clustering models

To illustrate the wide applicability of the TSB prior, we
describe three probabilistic partition clustering methods
that greatly benefit from this prior. All of these clustering

TABL E 1 Example of the calculations involved in the

truncated stick-breaking prior assuming a maximum number of six

cluster

Cluster Vk θk
1 0.19 0.19

2 0.33 0.33 (1 � 0.19) = 0.27

3 0.27 0.27 (1 � 0.33) (1 � 0.19) = 0.15

4 0.95 0.95 (1 � 0.27) (1 � 0.33)
(1 � 0.19) = 0.38

5 0.47 0.47 (1 � 0.95) (1 � 0.27)
(1 � 0.33) (1 � 0.19) = 0.01

6 1 (by definition) 1 (1 � 0.47) (1 � 0.95) (1 � 0.27)
(1 � 0.33) (1 � 0.19) = 0.01

F I GURE 1 Visual representation of the stick-breaking

metaphor. From top to bottom, one starts with a stick of length 1,

breaking it into two sticks of length 0.19 and 0.81 (black and red).

This latter piece (red) is then broken again into two sticks of length

0.27 and 0.54 (red and green). This latter piece (green) is then

broken into two sticks of length 0.15 and 0.39 (green and blue).

This process is reiterated multiple times until the maximum

number of groups is reached
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models have an observational model in which the
response variable yi, conditioned on the latent cluster
membership variable zi, comes from a distribution that
has some parameters indexed by zi. More explicitly, we
assume that

yijzi ¼ k� f βk,ϕð Þ

where βk is the set of cluster-specific parameters and ϕ is
a vector containing the remaining parameters that are
not cluster specific. We specify f() and the priors for βk
and ϕ in greater detail when describing the individual
models used to illustrate the TSB prior. In all models, we
assume that the latent cluster membership variable zi is
given by

zi �Cat θð Þ

and that

θ�TSB γð Þ:

A commonly used prior for γ is a Gamma distribution
(Dunson & Xing, 2009; Manrique-Vallier, 2016; Si &
Reiter, 2013). However, we decided to adopt a discrete
uniform prior for γ, where this parameter can take any of
the following values 0.1, 0.15, 0.2,…, 0.95, and 1.00 with
equal probability. This prior was chosen because it
ensures γ ≤ 1, it is straightforward to implement, con-
forms to our prior belief of equal probability for all possi-
ble values of γ, and resulted in good mixing of our
MCMC algorithms. Because of the truncation in the
stick-breaking prior, γ ≤ 1 ensures that the last group will
be smaller than all the other groups (i.e., E[θk] > E[θK]
for k = 1, …, K � 1). All models were fit using Gibbs sam-
plers and detailed information regarding the full condi-
tional distributions (FCDs) used by these algorithms is
given in Appendix S1.

Extensive simulations are used to show how the TSB
prior can be used within these models to successfully esti-
mate the true number of groups without requiring the
fitting of multiple models with different numbers of
groups. For all simulated data sets, we vary the true num-
ber of groups K and set the parameters within the vector
θ to 1/K, resulting in clusters of approximately equal size.
We estimate the true number of groups by calculating the
minimum number of groups that together represent more
than 99% of all observations. More specifically, we
assumed that the estimated number of groups bk is given
by min

k

Pk
j¼1

bθj >0:99
� 	

, where bθj is the posterior mean
for group j. Finally, because of the large number of simu-
lations and the large number of parameters within any
given model, we assessed convergence by examining

trace plots of the log-likelihood instead of trace plots of
individual parameters.

Mixture model applied to movement
ecology

Model description

Hidden Markov models (HMMs) have been extensively
used to identify latent behavioral states (e.g., encamped,
area restricted search, and transit) based on metrics derived
from GPS location data, such as step lengths and turning
angles (Morales et al., 2004). The estimation of latent states
is valuable to the understanding of animal movement pat-
terns since these states can be used to characterize the func-
tion of movements across a landscape when organisms are
not directly observable (McClintock et al., 2020; Patterson
et al., 2017; Wittemyer et al., 2019). By evaluating behavior-
specific movements in relation to environmental covariates,
mechanistic drivers of movement and measures of habitat
suitability can be discerned from a variety of models, such
as resource (Manly et al., 2002) or step-selection functions
(Abrahms et al., 2016; Fortin et al., 2005; Wilson
et al., 2012; Wittemyer et al., 2019). These latent states can
also be used to infer activity budgets, providing a link to an
animal’s relative energy expenditure (Attias et al., 2018;
Christiansen et al., 2013; McClintock et al., 2013; Wilmers
et al., 2017; Wilson et al., 2020).

Similar to HMMs, our model also identifies these
latent behavioral states, but it does not rely on a Markov-
ian assumption or an underlying mechanistic movement
process (e.g., correlated random walk). As a result, our
model is better described as a mixture model instead of
an HMM. Furthermore, instead of using the probability
density functions typically adopted to model step lengths
(e.g., gamma and Weibull) and turning angles (e.g., von
Mises and wrapped Cauchy), we discretize these data and
use a conditional categorical distribution as the likeli-
hood. While discretizing the data arguably results in the
loss of some information content, this approach has the
benefit of being able to represent standard and non-
standard distributions. This is important because para-
metric models can be prone to model misspecification
(Diana et al., 2020) and it has been shown that relatively
minor discrepancies between the data and the standard
distributions often adopted within HMMs can lead to the
identification of additional but superfluous latent states
(Pohle et al., 2017). We believe that the flexibility in rep-
resenting the distributions of step lengths and turning
angles outweighs the relatively minor loss of information,
particularly in the context of the large number of obser-
vations that arise from these GPS sensors.

ECOLOGICAL APPLICATIONS 5 of 19



Let y 1ð Þ
i and y 2ð Þ

i denote the step length and turning
angle bins, respectively, that observation i falls into. We
assume that

y 1ð Þ
i jzi ¼ k�Cat ϕk1ð Þ

y 2ð Þ
i jzi ¼ k�Cat ϕk2ð Þ

where zi = k is the latent cluster memberships of observa-
tion i for data type 1 and 2, respectively. The vectors ϕk1

and ϕk2 contain the probability that step lengths and
turning angles, respectively, fall in each bin given that
these observations were assigned to cluster k. Finally, our
priors are

ϕk1 �Dirichlet að Þ

ϕk2 �Dirichlet að Þ:

We assume a relatively sparse prior Dirichlet distribution
for ϕk1 and ϕk2 by setting a to 0.1.

Simulated movement data

We systematically varied the number of clusters K from
2 to 10 and simulated 10 data sets for each setting. We
assumed that both step lengths and turning angles were
discretized into 15 bins. Each simulated data set con-
tained 15,000 observations closely following the genera-
tive model described under “Model Description”. To
ensure that each cluster was sufficiently distinct from the
other clusters, we relied on a discretized normal distribu-
tion for ϕk1 and ϕk2. We assumed that the means were
evenly distributed across the 15 bins and that the stan-
dard deviation was one-fourth of the distance between
means. For example, for three clusters, this discretized
normal distribution peaked at the 1st, 8th, and 15th bins,
respectively, and the standard deviation was equal to
(8� 1)/4 = 1.75. Finally, we set the maximum number of
groups to 15 and ran the Gibbs samplers for 10,000 itera-
tions for each simulated data set.

Empirical movement data

We rely on GPS telemetry data from 20 individuals of the
southern three-banded armadillo (Tolypeutes matacus), a
species classified as Near Threatened (A2cd) by the IUCN
Red List of Threatened Species and highly prioritized for
conservation in Brazil (ICMBio, 2014). These data were

collected from two sites in the Pantanal wetlands of
Brazil using a GPS tracking device with approximately
5-minute interval fixes. For each captured individual,
age, sex, reproductive status, and body mass were mea-
sured. Additional information regarding this system and
data can be found in Attias et al. (2020).

Location errors and missing location fixes are
widely acknowledged problems with GPS location data
(Bjorneraas et al., 2010; Ranacher et al., 2016). To prop-
erly analyze these data, we used a number of filtering
steps. First, we excluded the data that were collected
while armadillos were in their burrows, usually during
the daytime, since no movements occurred during this
time. Second, we only retained measurements at
5 � 1 minute intervals to ensure that the derived speed
and turning angles were comparable. Speed was calcu-
lated as step length divided by the time interval (i.e., the
amount of time between successive GPS fixes) and turn-
ing angle was calculated as the change in direction
between successive steps. Finally, we removed observa-
tions for which speed was greater than the 99.9% percen-
tile (equal to 0.71 m/s) to remove biologically implausible
movements. After all of these filtering steps, our final
data set contained 13,671 observations from 20 individ-
uals. Speed was discretized into bins of equal widths
(0.1 m/s) up to 0.6 m/s with the final bin containing all
observations >0.6 m/s, resulting in 7 bins. Turning angle
was discretized into 10 evenly spaced bins between �π
and π.

We set the maximum number of groups to 15 and ran
our Gibbs sampler for 20,000 iterations, discarding the
first one-half of the iterations as burn-in. Besides identify-
ing and characterizing each behavioral state, the goal of
this analysis was also to gain insights regarding the basic
ecology of this poorly known species. To this end, we
explore how different factors influence the probability of
each behavioral state using a post-hoc generalized linear
mixed model (GLMM) with random effects for each indi-
vidual using the R package lme4 (Bates et al., 2015). In
addition to the individual level information from the
armadillos, we include time of day, ambient temperature,
and precipitation as additional predictor variables. Tem-
perature and precipitation are based on daily averages
obtained from automatic stations of the Brazilian
National Institute of Meteorology (INMET), located in
the municipality of each study site. Differently from the
clustering process, in which a single model was fit to data
from both sexes, we fitted separate GLMM models for
females and males. In these models, random effects were
included for each individual. It is important to note that
uncertainty from the mixture model is not appropriately
propagated to the GLMM parameter estimates. However,
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we believe that this model can still be useful in helping
to interpret the results from the mixture model.

Mixture model applied to species
occurrence data (i.e., biogeographic
region model)

Model description

In this section, we focus on the clustering of locations
with similar species composition. These locations are
often spatially clustered, resulting in areas that have been
variously called biogeographical regions (BR), bioregions,
regions of common profile, forest types, or bird conserva-
tion regions in the literature. The delineation of these
areas is a common task in ecology because it has impor-
tant implications for both basic and applied scientific
questions, such as those in historical biogeography, con-
servation, and natural resources management (Hill
et al., 2017; Kreft & Jetz, 2010; Vilhena & Antonelli,
2015). A review of methods to delineate these areas is
provided in Hill et al. (2020).

Let yis denote the number of times that species
s (s = 1, …, S) was seen in location i (i = 1, …, n). We
assume that yis arises from a Binomial distribution
given by

yis jzi ¼ k�Binomial ni,ϕksð Þ

where zi is the latent group membership and ni is the
number of observation opportunities in location i. Notice
that zi influences this Binomial distribution by determin-
ing the subscript of the parameter ϕks, where k = 1, …, K.
The parameter ϕks represents the presence probability of
species s if location i belongs to cluster k. Therefore, the
vector ϕk1,…,ϕkS½ � characterizes cluster k in relation to its
species composition. Finally, we adopt the following
priors:

ϕks �Beta a,bð Þ:

We assume that a = b = 1, resulting in a uniform prior
for ϕks.

Simulated biogeographic data

The true number of groups K was set to 2, 4, 8, 16, and
32 for this model. Ten data sets were generated for each
setting and all simulated data sets had 2679 locations
and 443 species, similar to the bird data set that was used

for one of our case studies. We generated the simulated
data closely following the generative model described in
the “Model Description” section. To retrieve the true
number of groups, we set the maximum number of
groups to 50 and ran the Gibbs samplers for 1000–5000
iterations for each simulated data set.

Empirical biogeographic data

The Alberta Biodiversity Monitoring Institute (ABMI)
monitors large-scale responses of biodiversity to environ-
mental change in Alberta, Canada. The program reports
on the status and trends of species by establishing
species–habitat relationships, determining species’ response
to various land-use changes, and producing predictive
maps. The information on the trend and status of biodi-
versity, derived from these species-specific results, is
then used to support natural resource and land-use deci-
sion making in Alberta. While species-specific models
are typically created, results are often summarized
across species depending on their shared response to
natural or human disturbance (e.g., forestry, agricul-
ture) to highlight major results that can be of particular
interest in a given region.

The goal of this analysis is to identify the major plant
communities in the forested and prairie regions of
Alberta, enabling the characterization of biodiversity
across large spatial scales. These results are useful in
summarizing the response patterns to disturbances of a
large number of species, helping to convey the results
(display, interpret, and explain) to land-use managers.
We used presence/absence data on vascular plant species
in Alberta collected by the ABMI. Sites surveyed by
ABMI in terrestrial habitat were spaced throughout
Alberta using the 20-km National Forest Inventory grid.
At each site, a 100 � 100 m survey area was established
and each survey area was further divided into four
50 � 50 m square plots. Because our model lumps these
four square plots together, the number of observation
opportunities in survey area i (i.e., ni) is equal to 4 and
the number of times species s was seen in this survey area
(i.e., yis) is an integer between 0 and 4. All vascular plant
species in these plots were identified and their presence/
absence in each of these plots was recorded. We focused
on data from 2007 to 2018 because of the consistent data
collection protocol from this period of time. We also
eliminated data from very rare species, defined as spe-
cies that were present in less than 1% of the sites,
resulting in a final data set with a total of 1082 sites and
351 species. Details about data collection can be found
in ABMI (2014).
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The maximum number of groups was set to 50 and
the Gibbs sampler was run for 10,000 iterations, dis-
carding the first one-half of the iterations as burn-in. To
enable the visualization of the spatial distribution of the
identified clusters, we fit post-hoc Bayesian logistic
regressions to the results from the BR model and then
use these regression models to create spatial predictions.
Predictor variables for these logistic regressions included
two climate variables (i.e., mean annual temperature and
precipitation) and percentage of land area covered by
nine habitat types (i.e., deciduous forest, pine forest,
white spruce forest, mixed wood forest, black spruce for-
est, fens with trees, swamps with trees, open wetland
[fen/marsh], and grass/shrub), and five types of anthro-
pogenic landscapes (i.e., harvested forest stands, vege-
tated strips along linear features [e.g., trails, roads, and
railways], crops/pastures, urban industrial/mines, and
paved and gravel roads). We considered these variables
because they are biologically meaningful and are avail-
able throughout the entire study area at the spatial scale
of 1 km2. Similarly to our analysis of the mixture model
results applied to the movement data, it is important to
note that uncertainty from the BR model is not appropri-
ately propagated to the logistic regression parameter esti-
mates. However, we believe that the derived maps based
on this logistic regression can still be useful in helping to
interpret the results from this mixture model.

Species archetype models

Model description

Species archetype (SA) models were originally developed
by Dunstan et al. (2011) to cluster species that responded
similarly to environmental gradients (i.e., species that
had similar regression parameters). While the original
model followed a relatively standard mixture of regres-
sion models approach (Grun & Leisch, 2008), this model
was subsequently improved by allowing each species to
have a separate intercept (Dunstan et al., 2013), enabling
species-specific differences in overall prevalence.

Species archetype models have been put forward as a
potentially effective strategy to group species, resulting in
species archetypes (i.e., groups of species that respond in
a similar fashion to the environment; Dunstan
et al., 2011; 2013; Hui et al., 2013). Furthermore, SA
model results can also simplify conservation manage-
ment decision by enabling managers to focus on a small
set of species archetypes, instead of having to evaluate a
multitude of species, each with their own idiosyncratic
response to the environment (Dunstan et al., 2011; 2013;
Hui et al., 2013).

Let yis denote the presence (1) or absence (0) of spe-
cies s (s = 1, …, S) in location i (i = 1, …, n). Because this
is a binary variable, we assume the following Bernoulli
distribution:

yis jzs ¼ k�Bernoulli Φ αsþxTi βk
� �� �

where zs is the latent cluster membership of species s, αs
is a species-specific intercept, xTi is a vector of location-
specific covariates, Φ() is the standard normal cumula-
tive distribution function, and βk is a vector containing
the regression slopes for cluster k, where k = 1, …, K.
Notice that the latent variable zs influences this
Bernoulli distribution by determining the subscript of
the vector βk. In other words, species that belong to the
same cluster k have the same slope parameters βk, essen-
tially having identical responses to covariates. We adopt
a probit link (instead of the more common logit link)
because it enables the straightforward fitting of the
model using the data augmentation scheme described in
Albert and Chib (1993). More specifically, we assume
the existence of another set of latent variables ωis

such that

yis ¼ 1 if ωis >0

yis ¼ 0 otherwise

where

ωis �N αsþxTi βk,1
� �

:

For the remaining parameters, we adopt the following
priors, given by

αs �N 0,10ð Þ

βk �N 0,Ið Þ

where I is the identity matrix.

Simulated data

Similar to the BR model, the true number of groups
K was set to 2, 4, 8, 16, and 32 for this model. Ten data
sets were generated for each setting and, similarly to the
empirical data, all simulated data sets had 2679 locations
and 443 species. We generated the simulated data closely
following the generative model described in the “Model
description” section. Furthermore, we simulated the
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slope parameters βk from standard normal distributions.
However, to simulate the species-specific intercepts, we
assumed that αs � N(0, 0.42). The standard deviation for
αs was set to 0.4 to avoid creating data in which certain
species are almost always present or almost always
absent. This is important because it would be difficult for
our models to assign these species to their correct groups
given that this assignment depends on the accurate esti-
mation of the slope parameters βk. We also assumed that
six uncorrelated covariates were available, which were
generated from standard normal distributions. The maxi-
mum number of groups was set to 50 and the Gibbs sam-
plers were run for 1000–5000 iterations for each
simulated data set.

Empirical data

The Breeding Bird Survey (BBS) is a long-term program
that monitors the status and trend of bird populations in
North America. In brief, data are collected annually in
June by trained participants along randomly established
roadside routes approximately 39 km long with stops
0.8 km apart. At each stop, a 3-minute point count is con-
ducted (Pardieck et al., 2017).

The BBS actually records count data (rather than
presence/absence) per stop in each route. However,
these counts may include the same individual observed
multiple times and bird detection may vary by species
and environmental conditions (e.g., weather or traffic
noise). To avoid some of the issues with the count data
and to be able to illustrate the use of the SA model
described in the “Model description” section, we con-
vert these count data into presence/absence of each
species in each route. Furthermore, we subset the BBS
data for the year of 2015 and eliminate data from very
rare species, defined here as species that were present
in less than 10 routes. In total, the final data set used
for analysis contained information on 443 species and
2679 routes, spread throughout Canada and the
United States.

To understand how bird species are affected by cli-
matic variables, we gathered average temperature and
precipitation for North America from 1970 to 2000 for
the month of June from WorldClim, with a spatial reso-
lution of 5 arc-minutes (10 km grid; www.worldclim.
org/version2). Because each species archetype can poten-
tially have non-linear associations with precipitation and
temperature, we relied on B-splines to capture the asso-
ciation between these environmental variables and spe-
cies presence. More specifically, B-spline basis functions
were included in the model for temperature and

precipitation, where knots were a priori set to 10%,
20%, …, 90% percentiles of the corresponding environ-
mental variables. Additional information regarding dif-
ferent types of splines and basis functions can be found
in Wood (2017) and similar functional clustering ideas
can be found in Dunson (2010). By identifying the niche
breadth in relation to temperature and precipitation of
the different species groups, this analysis is able to iden-
tify which of these groups are more likely to be impacted
by changes in precipitation, changes in temperature, or
changes in both variables. We set the maximum number
of groups to 50 and ran our Gibbs sampler for 10,000
iterations, discarding the first one-half of the iterations
as burn-in.

Software

To enable readers to reproduce the results described in
this article and to use the different models highlighted
here for their own data, we have created an R package
called EcoCluster that enables straightforward fitting of
the BR model and the SA model, both with the TSB prior.
We have also created an R package called bayesmove
(Cullen et al., 2021) that enables the straightforward
fitting of the mixture model with the TSB prior used for
the movement data. These packages are available online
(https://doi.org/10.5281/zenodo.5683639; https://CRAN.R-
project.org/package=bayesmove). The vignettes accompany-
ing these R packages illustrate how to fit these models and
interpret their results.

RESULTS

Simulated data results

We find that the proposed models with the TSB prior are
able to successfully recover the true number of groups for
all models, with a slight decrease in performance for the
BR model when the true number of groups is equal to
32 (top panels in Figure 2). Importantly, we find that the
data contain substantial information on γ (the parameter
that governs the TSB prior), with posterior means for γ
that are relatively small for sparse settings (i.e., when
only few groups exist) vs. closer to 1 when many groups
exist (bottom panels in Figure 2). We also find that all of
the proposed algorithms were able to accurately retrieve
the parameter values used to simulate the data (i.e., ϕk1

and ϕk2 for the mixture model applied to the movement
data, ϕks for the BR model, and αs, βk for the SA model;
data not shown).
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The standard approach of fitting models with different
number of clusters and then selecting the optimal number
of clusters is much more computationally expensive. For
example, using the real data sets, we found that the time
required to fit the mixture model with the TSB prior applied
to movement data and a maximum of 15 groups was equal
to 17% (25 minutes vs. 149 minutes) of the time needed to
fit multiple mixture models, one for each number of clus-
ters (2–15). Similarly, fitting the BR model once with the
TSB prior and a maximum of 50 groups corresponds to
approximately 6% (10 minutes vs. 189 minutes) of the total
time required to vary the number of clusters from 2 to
50 and fit individual BR models for each setting. Finally,
fitting the SA model once with the TSB prior and a maxi-
mum of 50 groups took 4% (40 minutes vs. 990 minutes) of
the time required to run multiple SA models, one for each
prespecified number of clusters (2–50).

Empirical results for the mixture model
applied to movement data

Our model identified two behavioral states (out of a max-
imum of 15 possible states) that together comprise 99% of
all observations. The first state is comprised mostly of
slower and more tortuous movements (hereafter “forag-
ing” state, Figure 3a,b) while the second state includes
faster and more directed movements (hereafter “transit”
state, Figure 3c,d). When exploring these results, we find
that, while the daily number of observations assigned to
the foraging state is very similar between males and
females (Figure 3e), males tend to have a higher number
of observations assigned to the transit state (Figure 3f).
To determine how covariates influence these behavioral
states, we fit a post-hoc GLMM, where the binary
response variable was equal to 1 for the transit state and

F I GURE 2 The use of the truncated stick-breaking (TSB) prior in the different model enables the successful uncovering of the true

number of groups (top panels) and these simulated data contain considerable information regarding the hyper-parameter of the TSB prior γ
(bottom panels). Left to right panels show the estimated number of groups (top panels) and the estimated γ (bottom panels) for the mixture

model applied to the movement data, the biogeographical regions (BR) model and species archetype (SA) model, respectively, based on

10 simulated data sets for each value of the true number of groups. We assumed a maximum of 15 groups for the mixture model applied to

the movement data, and a maximum of 50 groups for the BR and SA models. Notice that the x-coordinate of each point was shifted slightly

(i.e., jittered) on the top panels to enable the visualization of overlapping circles
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F I GURE 3 Results for the mixture model applied to movement data. Panels a–d depict the estimated distributions for speed and

turning angle for the two behavioral states identified by the mixture model. The first state, henceforth “foraging,” is characterized by slower

and more tortuous movements (panels a and b) while the second state, henceforth “transit,” is characterized by faster and more directed

movements (panels c and d). Comparisons are made between females (F) and males (M) regarding the daily number of observations

assigned to the foraging state (panel e), and the daily number of observations assigned to the transit state (panel f), and the estimated

proportion of transit observations as a function of time of night (panel g)
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0 otherwise. The larger proportion of the transit state for
males in comparison to females is evident by the much
larger intercept for males when compared to females
(Table 2). Furthermore, we find a quadratic relationship
between the probability of exhibiting the transit state
with time of night (Figure 3g). Finally, we do not find a
strong influence of precipitation, temperature, or region
on the proportion of the transit state (Table 2). These
results suggest that armadillos from both regions behave
similarly and that precipitation/temperature have no
measurable effect on the proportion of the transit state
despite the fact that decreased daily temperatures have
been associated with an overall lower duration of activity
period (Attias et al., 2018).

Empirical results for the BR model applied
to the vascular plant data from Alberta

The BR model identified seven (out of 50) major groups,
representing 99.5% of all locations. This analysis resulted
in substantial dimension reduction given that, instead of
having to separately examine the results for 351 species,
the BR model enables us to focus just on the results from
these seven groups. To simplify the interpretation and
enable the spatial visualization of the patterns identified
by the BR model, we fitted a post-hoc logistic regression
to the results from this model. Predictions from these
regression models reveal striking spatial patterns
(Figure 4). For example, group three had a strong associa-
tion with temperature and precipitation, with most species
in this group being relatively rare species that are mainly
restricted to the colder Rocky Mountains, Upper Foothills,
and Canadian Shield natural regions (e.g., Engelmann
spruce Picea engelmannii and Rocky Mountain alpine fir
Abies bifolia). On the other hand, group 2 had a positive
association with most of the other remaining upland forest
types (i.e., deciduous, white spruce, mixed wood, and
harvested stands). Groups 4 and 5 were mostly restricted
to lowland forest types (black spruce and fens with trees).
Interestingly, group 1 was strongly associated with the pro-
portion of cultivated land (e.g., crop and pasture), agreeing
with the fact that many of the species that dominate this
group are either introduced or cultivated species
(e.g., canola Brassica napus and barley Hordeum vulgare).
Group 7, on the other hand, was strongly associated with
highly anthropogenic landscapes, with substantially
increased presence probabilities in regions with higher
urban/industrial/mines areas and associated vegetated
strips along railways, roads and trails (soft-linear). The
characteristic species in this group include white sweet
clover Melilotus albus, yellow sweet clover M. officinalis,
and scentless chamomile Tripleurospermum inodorum.

Empirical results for the SA model applied
to the breeding bird survey data

All of the 50 species groups in the SA model had species
in them but 95% of all the species were contained in the
first 40 of these groups. As expected, several groups were
strongly associated with temperature and/or precipita-
tion, typically exhibiting unimodal relationships between
average prevalence and these environmental variables.
An example of the results for four species groups are
shown in Figure 5. The results for all the other species
groups are available in Appendix S2.

The line graphs in Figure 5 illustrate how all the spe-
cies within a species archetype respond in a similar fash-
ion to the environment. The heat maps of the predicted
average prevalence for different combinations of tempera-
ture and precipitation provide a depiction of the environ-
mental space occupied by these species groups (i.e., the
realized niche, Figure 5). These figures illustrate that some
species archetypes are relatively insensitive to precipitation
but very sensitive to temperature (e.g., species archetype
31), some are relatively insensitive to temperature but very
sensitive to precipitation (e.g., species archetype 5), while
some groups are sensitive to both temperature and precipi-
tation (e.g., species archetype 21). These results can poten-
tially be useful to highlight which sets of species are more
likely to be impacted by different facets of climate change
(Tingley et al., 2012), enabling the prioritization of these
species for conservation purposes.

DISCUSSION

Determining the number of clusters is a long-standing
challenge for a range of clustering algorithms. The stan-
dard approach to deal with this problem for model-based
clustering consists of fitting models with different num-
ber of groups and selecting the optimal number of groups
using indices such as AIC or BIC, an approach that can
be very computationally intensive and that has been
reported to often overestimate the true number of groups.
Here we show how Bayesian clustering models, when
used in conjunction with sparsity inducing priors such as
the TSB prior described here, can determine the number
of clusters without requiring the fitting of multiple
models.

To illustrate how a wide range of Bayesian clustering
models can benefit from sparsity-inducing priors, we
show with simulated data how the truncated-stick break-
ing (TSB) prior can successfully estimate the true number
of groups for three types of clustering models (i.e., two
mixture models, one applied to movement data and the
other applied to species occurrence data, and an SA
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TAB L E 2 Generalized linear mixed model (GLMM) regression coefficients

Parameters

Female Male

Estimate Pr(>jzj)a Estimate Pr(>jzj)a

Intercept �0.47 0.000 �0.03 0.803

Time �0.23 0.083 0.00 0.969

Time2 �0.48 0.019 �0.49 0.030

Temperature 0.04 0.246 0.01 0.795

Precipitation 0.00 0.843 0.06 0.096

Region 0.25 0.063 0.03 0.872

Note: Statistically significant (P < 0.05) coefficients are highlighted in boldface type.
aNote that P values should be interpreted with care because (a) the GLMM model assumes temporal independence within each individual, which is unlikely to
be a valid assumption given that these data were collected every 5 minutes, and (b) uncertainty from the first-stage mixture model is not taken into account.

F I GURE 4 Spatial distribution of the groups identified by the biogeographic region model. Each panel depicts the predicted presence

probability of each group, where cyan to purple indicate probabilities ranging from 0 to 1, respectively. Group numbers are given in the

lower left corner of each map
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model that clusters species according to how they
respond to the environment). Nevertheless, we believe
that the ability to identify the existing clusters is likely to
depend on several factors, including the type of model,
how distinctive the clusters are from one another, the
size of each group, and the amount of available data. For
example, additional simulations in which groups were
allowed to vary in size revealed that the BR model did
not perform as well as the other models in this setting
(Appendix S3). A closer examination of the BR model
results revealed that this model had a challenging time
correctly assigning some of the plots to the rare groups
(i.e., groups assigned to less than 10 plots) because these

groups were rare and therefore much harder to character-
ize. Additional research needs to be conducted to better
characterize the circumstances in which the TSB prior is
likely to work well and when it is likely to fail.

We also show that the standard approach of varying
the number of groups and fitting multiple models is
much more computationally expensive. Some might
argue that using AIC or BIC based on fitting multiple
models is only computationally problematic if the algo-
rithms used to fit these models are slow (e.g., MCMC
algorithms). Our experience has been that several of the
alternative clustering models that rely on optimization
(e.g., SAM and HMM in the ecomix and momentuHMM R

F I GURE 5 Association between occurrence probability (prevalence) and precipitation and temperature for a subset of the species

archetypes identified by the SA model. Each panel displays the results for a particular species archetype (numbers in the top left corner

correspond to the species archetype identifier). Individual lines in the line graphs depict the estimated associations for each species within

that archetype. For the precipitation line graphs, temperature was set to its mean value. Similarly, for the temperature line graphs,

precipitation was set to its mean value. Heat maps show the environmental space of each species archetype by displaying the average

prevalence for each temperature and precipitation combination. In all panels, the ranges for precipitation and temperature were limited to

the 2.5 and 97.5 percentiles from the original data. Cyan to purple indicate probabilities ranging from 0 to 1
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packages, respectively) instead of MCMC algorithms are
also relatively slow because they often require multiple
model fits for a given number of groups due to the
multimodality of the likelihood surface. This is further
exacerbated if different numbers of groups need to be
tested and a bootstrapping approach is required to esti-
mate parameter uncertainty (e.g., as in SAM within the
ecomix package). As a result, despite the intuition that
optimization algorithm will always be faster than MCMC
algorithms, in practice this is not always true because of
the multiple model fits that are required by these
optimization-based methods.

We demonstrate how these models can unveil impor-
tant environmental management and ecological insights.
In the mixture model applied to the movement data from
the three-banded armadillos, we identified two latent
behavioral states, which were labeled foraging and tran-
sit. Additionally, we found that males tend to exhibit a
greater proportion of time in the transit state than
females and that the proportion of this state peaks mid-
way through the night. These sexual differences regard-
ing the transit state are likely related to the species’
sociobiology, as the increased transit state of the promis-
cuous males should increase their chances of encounter-
ing receptive females. Indeed, males have been recently
shown to have larger home ranges than females (Attias
et al., 2020) and, according to our results, this difference
is unlikely to be related to the acquisition of energetic
resources by the larger males, as there were no noticeable
differences in the amount of foraging state between sexes
(Figure 3e).

The BR model enabled substantial dimension reduc-
tion by summarizing the results from 351 species into
seven major groups. Similar to forest types and Bird Con-
servation regions, these results can be used for conserva-
tion and management purposes (https://data.fs.usda.gov/
geodata/rastergateway/forest_type/; https://nabci-us.org/
resources/bird-conservation-regions/). For example, our
results have identified a plant community that is
heavily influenced by anthropogenic disturbance. By
mapping the spatial distribution of this group, our
analysis can enable the spatial prioritization of restora-
tion and invasive species elimination initiatives. Fur-
thermore, the monitoring of this group is likely to be
critical in identifying the main drivers of environmen-
tal change in the region and developing effective miti-
gation strategies.

In relation to the SA model applied to the 2015 survey
data on North American breeding birds, we have identi-
fied species groups that respond similarly to temperature
and precipitation. This enables the identification of sets
of species that are likely to be more impacted by changes
in precipitation, by changes in temperature, or by both.

Interestingly, differently from the other two applications,
the SA model still identified the existence of 50 groups,
which was the maximum number of groups allowed by
our analysis. These results suggest that there are probably
more groups than what we have allowed for in this analy-
sis. We believe that this might be due to the flexibility of
the environmental response curves and the relatively
rigid structure of SA models, which require species to
have the same set of slope parameters. As a result, rela-
tively minor changes in how these species respond to
their environment, particularly when there are a lot of
observations for any given species, can foster the creation
of many small groups instead of few large groups. Future
research could devise a different formulation for the SA
model so that species can be grouped together even if
they differ slightly in how they respond to the environ-
ment. These results are also important to highlight that,
despite the use of a sparsity-inducing prior, the model
might still reveal that a sparse solution (i.e., a few clus-
ters) is not supported by the data. In this situation, the
modeler has to decide to either use the results as they
are, because a larger number of groups would be
unmanageable, or rerun the analysis with a larger num-
ber of groups.

An important limitation in our analysis of the arma-
dillo movement data and the plant occurrence data from
Alberta is that we relied on post-hoc regression models to
better interpret our mixture model results. The problem
with this two-stage approach is that it does not properly
propagate the uncertainty associated with the mixture
model results, potentially leading to over-confident infer-
ence and predictions. While this might not be too trou-
blesome for exploratory studies like ours, this is an
important problem for more confirmatory analyses.
There are relatively few methods that have been devel-
oped that avoid these post-hoc analyses (see review in
Hill et al., 2020). Nevertheless, the few existing single-
stage methods require multiple models to be fit to deter-
mine both the optimal number of groups and the optimal
set of covariates. Properly propagating the uncertainty
associated with all these decisions is an area of active
research even for these single-stage models.

It is important to note that, because our primary goal
was to show the versatility of the TSB prior, we have not
provided a more in-depth comparison of the three example
models to other commonly used models. Such a model
comparison could be useful future research. Furthermore,
we have focused on ecological clustering applications, but
the TSB prior is likely to be useful for a much broader range
of applications (e.g., for use of the Dirichlet process for
genetic clustering; see Huelsenbeck & Andolfatto, 2007).
Also, we have focused on models where the primary inter-
est is on the identified latent structure (i.e., the identified
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clusters) because we believe that this is the type of
dimension-reduction result that ecologists find more reveal-
ing and insightful. Indeed, many of the ecological applica-
tions involving the Dirichlet process and its extensions rely
on the identified clusters to draw insights regarding, for
example, animal movement and migration patterns (Diana
et al., 2020; Valle et al., 2017), temporal dynamics of seal
pup rookeries (Johnson et al., 2013), and spatial distribution
of bird communities (Valle et al., 2018). However, we
acknowledge that the Dirichlet process has been used for a
much wider range of applications, some of which are not
focused on identifying clusters. For example, in ecology, the
Dirichlet process has been used for density estimation
(Dorazio et al., 2008), to develop spatial models of the
expected number of birds (Rodriguez & Dunson, 2011), and
to generate a more parsimonious description of the covari-
ance matrix between species in joint species distribution
models (Taylor-Rodriguez et al., 2017).

It is important to note that our approach does not
apply to all clustering methods. For instance, many clus-
tering approaches are algorithmic and do not rely on an
underlying statistical model, precluding the use of our
approach. Even among clustering approaches based on
statistical models, adopting a prior will only make sense
for models fitted within a Bayesian framework. Finally,
attempts to fit models with the TSB prior using packages
such as JAGS (Plummer, 2003) and Stan (Stan Develop-
ment Team, 2020) may result in label switching and con-
vergence problems (Sollmann et al., 2020). The reason for
this is that we have observed that a critical step for our
customized MCMC algorithms to perform well is to order
the identified clusters (from largest to smallest) during
the burn-in phase. While this ordering does not change
the likelihood (cluster labels are unidentified in standard
mixture models), it does influence the TSB prior. Mixture
models often have multimodal posteriors/likelihood
functions (Scrucca et al., 2016; Stephens, 2000) and the
ordering of clusters helps the model with the TSB prior
find the highest peak, this way reducing label switching
and convergence issues. Developing approaches for
ordering clusters within packages, such as JAGS or Stan,
is an important area for future research.

Despite the limitations described above, it is likely that
clustering approaches will greatly benefit from sparsity-
inducing approaches like the TSB prior in the same way
that a wide range of regression models has benefitted from
sparsity-inducing approaches (e.g., regularization penalties
or strong priors) to improve predictions and identify the
most important predictor variables (Hooten & Hobbs, 2015).
Several extensions to this prior, already developed in Bayes-
ian nonparametrics, may be profitably exploited in the
future for clustering applications in ecology and environ-
mental science. For example, the Pitman-Yor process (also

known as the two-parameter Poisson Dirichlet process;
Pitman, 1995; Pitman & Yor, 1997) is a generalization of
the Dirichlet Process that offers more flexible clustering
rates and cluster size tail behaviors. Alternatively, a hierar-
chical Dirichlet process (Teh et al., 2006) could be used to
capture nested clusters. Finally, a truncated stick-breaking
prior together with a kernel based approach (Reich &
Fuentes, 2007) could be used so that spatially proximate
sites are more likely to cluster together, or a probit stick-
breaking process (Rodriguez & Dunson, 2011) could be
adopted to ensure that sites with similar environmental
conditions and/or species with similar trait values are
more likely to be clustered together.

Despite the fact that the stick-breaking prior has a rela-
tively long history in statistics, relatively few ecological
modelers have used this prior, probably due to the general
lack of awareness among quantitative ecologists and envi-
ronmental scientists regarding how this prior can help a
wide range of applied clustering problems. This is particu-
larly surprising given the prominent role of clustering
methods in ecology and related disciplines (Legendre &
Legendre, 2012). With this article, we hope to help remedy
this situation by better characterizing the benefits of this
approach while at the same time providing R packages that
implement these methods, enabling the straightforward
fitting of these models by quantitative scientists.
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